

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

ENTRANCE EXAMINATION CHEMISTRY (Sample)

Time Allowed : 2 hours

INSTRUCTIONS

- 1. This paper consists of **TWO (2)** Sections and comprises **EIGHT (8)** pages.
- 2. Answer ALL the questions in Section A and Section B.
- 3. For Section A, each multiple choice question carries 2 marks. Section B consists of 3 questions (total 40 marks).

SECTION A

This section consists of **THIRTY (30)** multiple choice questions. Answer **ALL** questions in this section.

- 1. Which of the following has no permanent dipole moments?
 - a. CHCl₃
 - $b. \ CH_2Cl_2$
 - c. C_2Cl_4
 - $d. \ C_2HCl_3$
- 2. Which is the most abundant element in the universe?
 - a. Hydrogen
 - b. Helium
 - c. Carbon
 - d. Oxygen
- 3. Which one of the following equilibrium mixture will not be affected by a change in pressure?
 - a. $CH_3CH_2CH_2OH(g) \longrightarrow CH_3CH=CH_2(g) + H_2O(g)$
 - b. $BaCO_3(s) = BaO(s) + CO_2(g)$
 - c. $H_2(g) + Cl_2(g) = 2HCl(g)$
 - d. $O_2(g) + 2Hg(l) = 2HgO(s)$

- 4. Calcium with elemental chlorine yields calcium chloride. Write a balanced chemical equation for this reaction.
 - a. $Ca(s) + Cl2(g) \rightarrow CaCl(s) + Cl(g)$ b. $Ca(s) + Cl2(g) \rightarrow CaCl2(s)$ c. $Ca(s) + 2 Cl2(g) \rightarrow CaCl4(s)$ d. $2 Ca(s) + Cl2(g) \rightarrow 2 CaCl(s)$
- 5. On heating, 0.09 mole of an element M reacts with 0.135 mole of oxygen gas. The empirical formula of the oxide of M is
 - a. M_2O_2
 - $b.\ M_3O_2$
 - c. M₄O₆
 - $d. \ M_2O_3$
- 6. Given that $\Delta H_f^0(FeCl_2(s)) = -341.8 \text{ kJ/mol}$ and that $\Delta H_f^0(FeCl_3(s)) = -399.5 \text{ kJ/mol}$, what is ΔH_{rxn} for the reaction: $FeCl_2(s) + \frac{1}{2} Cl_2(g) \rightarrow FeCl_3(s)$
 - a. -57.7 kJ b. +714.3 kJ c. 0 kJ
 - d. +57.7 kJ
 - u. 57.7 Kb
- 7. Iron has a atomic number of 26. What is the electron configuration of the iron in FeCl₃?
 - a. $1s^22s^22p^63s^23p^63d^34s^2$ b. $1s^22s^22p^63s^23p^63d^6$ c. $1s^22s^22p^63s^23p^63d^5$ d. $1s^22s^22p^63s^23p^63d^64s^2$
- 8. A microwave oven emits radiation at a wavelength of 0.500 cm. What is the frequency of this radiation?
 - a. $1.67 \times 10^{-11} \text{ s}^{-1}$ b. $6.67 \times 10^{-7} \text{ s}^{-1}$ c. $6.00 \times 10^{10} \text{ s}^{-1}$ d. 2.00 s^{-1}
- 9. The radioactive decay of sodium-24 has a half-life of 14.66 hours. How many grams of the radioactive sodium-24 will be left after 73 hours if the initial weight of the sample is 4g?
 - a. 0.125g
 - $b. \ 0.032g$
 - c. 0.064g
 - d. 0.26g

10. Use the following information to answer the question below:

 $\operatorname{Sn}^{2+}(\operatorname{ag}) + 2e = \operatorname{Sn}(s)$ E0 = -0.14 VSn4+(aq) + 2e = Sn2+(s)E0 = +0.15 VFe2+(aq) + 2e Fe(s) E0 = -0.44 V $Fe3+(aq) + e \longrightarrow Fe2+(aq)$ E0 = +0.77 V

Under standard conditions, which of the following statements is correct?

- a. Sn(s) can reduce Fe(s)
- b. Fe(s) can oxidize $\operatorname{Sn}^{2+}(aq)$
- c. $\operatorname{Sn}^{2+}(\operatorname{aq})$ can reduce $\operatorname{Fe}^{3+}(\operatorname{aq})$ d. $\operatorname{Fe}^{3+}(\operatorname{aq})$ can reduce $\operatorname{Sn}^{4+}(\operatorname{aq})$
- 11. What is the pH of a solution of HNO_3 with a concentration of 0.0013M?
 - a. 2.89
 - b. 6.64
 - c. 1.30
 - d. 11.10
- 12. The maximum number of electrons in the shell having the principle quantum number of n =3 is
 - a. 18
 - b. 26
 - c. 28
 - d. 36
- 13. The hybridization of the nitrogen atom in the molecule NF_3 is
 - a. sp^2
 - b. spd
 - c. sp^3
 - d. $sp^{3}d$
- 14. Which of the following statements is true about the elements in Group II of the Periodic Table?
 - a. The ionic radius decreases down the group
 - b. The electronegativity decreases down the group
 - c. They form stable oxidation states of two and four
 - d. The atomic radius increases down the group

- 15. The oxidation number of Chromium in the ion CrO_4^{2-}
 - a. +4
 - b. +7
 - c. +6
 - d. +3
- 16. Which of the following compounds would react most rapidly with NaCN?
 - a. 1-bromobutane
 - b. (R)-2-bromobutane
 - c. (S)-2-bromobutane
 - d. 1-bromo-2-methylpropane
- 17. The following reaction can be classified as

- a. eminination
- b. substitution
- c. oxidation
- d. rearrangement
- 18. Reaction of benzene with benzoyl chloride and aluminium trichloride will give as the product:
 - a. benzophenone
 - b. chlorobenzene
 - c. no reaction
 - d. benzoic acid
- 19. What will be the product(s) of the following reaction:

- c. (i) and (ii)
- d. (i), (ii) and (iii)

20. What will be the product(s) of the following reaction

21. Phosphorus forms three well known compounds containing chlorine: phosphorus trichloride (PCl₃), phosphorus pentachloride (PCl₅) and phosphorus oxychloride (POCl₃). What are the oxidation numbers of phosphorus in the compounds?

PCl ₃	PCl ₅	POCL
a3	-5	-5
b. +1	+1	+3
c. +3	+5	+4
d. +3	+5	+5

- 22. Which of the following is the formula for a covalent network?
 - a. N_2O_4
 - b. P₄O₁₀
 - c. CO_2
 - d. SiO₂

23. Which of the following is a pure compound?

- a. Milk
- b. Ice cream
- c. Lava
- d. Distilled water
- 24. Which of the following electron configurations represents the ground state of an element?
 - a. [Ne] $3s^1 3p^1$
 - b. [He] $2s^{1}2p^{3}$
 - c. $[Ne]3s^23p^33d^1$ d. $[Ne]3s^23p^3$
- 25. Formic acid (HCO₂H) has $K_a = 1.8 \times 10^{-4}$. What is the value of K_b for the formate ion $(HCO_{2}^{-})?$
 - a. -1.8×10^{-4} b. 1.8×10^{10}

c. 5.6×10^{-11} d. 5.6×10^{4}

26. Which of the following molecules/ions has non-zero dipole moments?

a. cis-HClC=CHCl

- b. O₂
- c. BF_3
- d. ICl₄

27. An increase in temperature increases the reaction rate because

- a. a greater fraction of the collisions have the correct orientation of molecules
- b. the activation energy of the reaction will decrease.
- c. temperature acts as a catalyst in chemical reactions.
- d. more collisions will have enough energy to exceed the activation energy.
- 28. Calculate the equilibrium constant for the reaction using the provided equilibrium concentrations.

$$H_2(g) + I_2(g) \implies 2 HI(g)$$

 $[H_2] = 0.0057 \text{ mol } L^{-1}, [I_2] = 0.0057 \text{ mol } L^{-1}, [HI] = 0.0345 \text{ mol } L^{-1}$

- a. 9.4×10^{-4}
- b. 0.027
- c. 37
- d. 1.1×10^3
- 29. In the following reaction:

 $HF(aq) + HPO_4^{2-}(aq) \implies F^{-}(aq) + H_2PO_4^{-}(aq)$

- a. HF is an acid and F^- is its conjugate base.
- b. HF is an acid and HPO_4^{2-} is its conjugate base.
- c. $HPO_4^{2^-}$ is an acid and $H_2PO_4^-$ is its conjugate base.
- d. $H_2PO_4^-$ is an acid and F^- is its conjugate base.

30. The ionization energies (IE) of Ti are as follows:

Ι	II	III	IV	V
6.82	13.58	27.49	43.27	99.22 eV

Stable oxidation states are expected when the difference in successive IE's exceeds 12 eV for valence electrons. What stable oxidation states are expected for Ti?

- a. Ti(I) only
- b. Ti (I) and Ti(V)
- c. Ti(I), Ti(II) and Ti(IV)
- d. Ti(II), Ti(III) and Ti(IV)

SECTION B

This section consists of **FOUR (4)** questions. Answer **ALL** questions in this section. This sample paper only shows 3 questions for reference only.

- 1. (a) Using dots to represent electrons, draw the electron distribution diagram (Lewis structure) of ClF₃. Use Valence Shell Electron Pair Repulsion theory (VSEPR) to explain the shape of this molecule.
 - (b) Draw and label all the valence orbitals found in chlorine atom.

	Concentrat	Initial Rate	
Experiment	[NO]	$[O_2]$	$(mol/L \cdot h)$
2	3.6×10 ⁻⁴	15.024×1100 ³²	₿. \$ ×10 ⁻⁸
3	1.8×10 ⁻⁴	1.04×10 ⁻²	1.7×10 ⁻⁸
4	1.8×10 ⁻⁴	5.2×10 ⁻³	?

2. Data for the reaction $2 \operatorname{NO}(g) + O_2(g) \rightarrow 2 \operatorname{NO}_2(g)$ are given in the table.

- (a) Determine the rate constant and write down the rate equation for the above reaction.
- (b) What is the initial rate of the reaction in experiment 4?
- 3. (a) Discuss the difference in reactivity between the following pairs of compounds under the conditions given
 - (i) benzene and phenol with bromine
 - (ii) 1-hexanol and 2-hexanol with chromium trioxide in acid
 - (iii) ethylamine and acetamide with dilute hydrochloric acid

- (iv) sodium methoxide and sodium t-butoxide with 1-bromopropane
- (b) How would you carry out the following transformation? More than one step may be required.

ОН | ОН

- END OF PAPER -